PHYSICAL REVIEW E, VOLUME 65, 021107
Self-avoiding walks on Sierpinski lattices in two and three dimensions

Anke Ordemanr* Markus Portd and H. Eduardo Roman
nstitut fir Theoretische Physik 111, Justus-Liebig-Universiiessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
2Max-Planck-Institut fu Physik komplexer Systeme; thivitzer Strasse 38, 01187 Dresden, Germany
3Dipartimento di Fisica and INFN, Universitdi Milano, Via Celoria 16, 20133 Milano, ltaly
(Received 6 September 2001; published 17 January)2002

The scaling properties of linear polymers on deterministic fractal structures, modeled by self-avoiding
random walkgSAW) on Sierpinski lattices in two and three dimensions, are studied. To this end, all possible
SAW configurations oN steps are enumerated exactly and averages over suitable sets of starting lattice points
for the walks are performed to extract the mean quantities of interest reliably. We determine the critical
exponent describing the mean end-to-end chemical distg(lm after N steps and the corresponding distri-
bution function,P5(~,N). A des Cloizeaux-type relation between the exponent characterizing the asymptotic
shape of the distribution, fof -0 andN—«, and the one describing the total number of SAWNdteps is
suggested and supported by numerical results. These results are confronted with those obtained recently on the
backbone of the incipient percolation cluster, where the corresponding exponents are very well described by a
generalized des Cloizeaux relation valid for statistically self-similar structures.
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. INTRODUCTION /=r. Areview of the present status of SAWs on Sierpinski
lattices can be found in Ref8].

The study of statistical properties of linear polymers, The paper is organized as follows. In Sec. Il we discuss
modeled by self-avoiding random walk8AW) embedded in  the expected scaling behaviors for the mean end-to-end
regular systems, has been extensively reported in the literghemical distance of the SAW afteM steps, the scaling
ture[1-3]. The effect of additional quenched disorder of theforms of the probability distribution functioRs(~",N), and
embedding matrix on the scaling behavior of SAW repre-the total number of walks of lengtN, Cy s. In Sec. IlI, we
sents a challenging area of research, particularly for strucdiscuss the numerical procedure employed and report our
tures displaying self-similar properties where the correspondexact enumeration results for the end-to-end distaSee.
ing critical exponents are expected to be different than inil A), the total number of SAW configuratioriSec. 111 B),
regular systems. Large percolation clusters at the percolatioand the probability distribution functiofSec. 111 O. Finally,
threshold are good candidates since they represent quite geBec. |V summarizes the main results and our concluding re-
eral models of random fractal structurésee, e.g., Refs. marks.

[4-8]). A question which is not completely understood re-
gards the relative role of disorder and self-similarity on the
distribution of the walks. To this end, the study of ordered Il. THEORETICAL RESULTS

systems such as the Sierpinski lattice, displaying exact self- _ _ o
similar scaling, is interesting to shed some light into this ~T0 characterize the spatial extent of SAWSs on a Sierpinski

quest. This is the goal of the present paper. lattice let us consider the topological end-to-end distafice
The Sierpinski lattices we consider are illustrated in Fig.after N steps of the walk. By averaging over all possible

1, in bothd=2 andd=3 spatial dimensions. These fractal Walks starting at a given lattice poifiising exact enumera-

objects are characterized by a mass fractal dimendign tion techniques the mean end-to-end chemical distance

=In(d+1)/In 2. We construct a “large” fractal latticécf. the /' (N) is obtained. The later is expected to scale as

Appendix, on which a self-avoiding walk is started at a

given lattice point and is constrained to make steps between .

nearest-neighbor lattice sites. To study the statistical proper- /(N)~N"s, (D)

ties of the walks, we enumerate exactly all the SAW configu-

rations ofN steps. This method has proved useful in the case

of disordered systems, such as the backbone of the incipient

percolation clustef6,7]. On Sierpinski lattices we study the

chains using the topological metric, merely due to numerical

convenience, since the chemical distarcbetween two lat-

tice points scales as the Euclidean distantetween them,

(@) (b)

*Present address: Department of Physics and Astronomy, Univer- FIG. 1. Sites(circles/cubesand bondgthick line9 of the Sier-
sity of Missouri at St. Louis, 8001 Natural Bridge Road, St. Louis, pinski lattice in(a) d=2 and(b) d=3 dimensions, obtained after
MO 63121-4499. the seconda) and first generation ste().
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which defines the critical exponemt. To obtain more de-
tailed structural information of the SAWSs it is useful to de-
termine the probabilityPg(~,N)d/ that a walk of lengthN
has an end-to-end distance in the rangand/+d/. The
corresponding probability distribution function(PDF)
P<(/,N) is expected to obey the scaling form

, )

, 1

/(N)

1.0
08 N e
G

vs(N)

0.6 o

where the scaling functioRg(x) is expected to behave as 04 et

x91+ds  for x<1
Fs(x)= ©)

S
x92tdsex —cex?] for x>1,

, , 10° —
andPg(/,N) is normalized according tfP<(/,N)d/ = 1. 10° 10"

Similarly as for SAWs on regular lattices and fractal N
structures, such as the incipient percolation cluster, the expo-
nent dg is believed to be given by

FIG. 2. Mean end-to-end chemical distar{e&N)) for SAWs

on the Sierpinski lattice as a function of the step leniythusing
Se=(1— Vs)fl, (4) exact enumeration of all walks, if@) d=2 for N<30, averaged
over 15 starting points, anth) d=3 for N=<20, averaged over

10 starting points. The continuous lines correspond to the values of
vs as obtained from RG calculation$l4] (cf. Table ),
vg=0.7986 @=2) and vs=0.67402 @=3). The dashed lines
display the present results, yieldings=0.78 (d=2) and

while the remaining exponents, andg3 are not known so
far. On regular lattices, the corresponding expongntis
given by g,=(vy—1)/ve [9], where vg is the Flory expo-
nent, and the second crmca! exponentescribing the total v¢=066 (@=3). The insets display the successive slopes
number of SAWs of lengtiN, is denoted as the enhancement (N)=d In(7(N))/d In N plotted versus N

exponent. In this work, we show that the simple generaliza-yS v P '

tion IIl. NUMERICAL RESULTS
s ¥s—1 To determine the scaling exponents characterizing the
91= Vs (5 probability distribution functiorPs(/,N) accurately, an av-

erage over different starting points for the SAW is required to
turns out to describe very well the values g obtained minimize the strong lattice effects typical of the Sierpinski
numerically. This form forg$ should be confronted with the structure(see, €.g110]). Details of the method employed are

one recently derived in the case of SAWSs on the backbone og!scussed in Fhe Ap_pendig. In ".Vh?t follows, the average over
the incipient percolation cluster, which in the Euclidean met- ifferent starting points will be indicated by the symkol).

ric reads A. End-to-end chemical distance
o7l N Bperc ® The behaviors of the mean end-to-end chemical distance
9= v, Vperc' (/(N)) as a function of step lengtN, obtained by exact

_ _ enumeration of all walks up tl=30 ind=2 andN=20 in
denoted as the generalized des Cloizeaux reldfignHere,  d=3, are displayed in Fig. 2. The insets show the effective
Bperc @nd vpec @re the usual critical percolation exponents.exponents v5(N), obtained from the successive slopes

The second term in Eq6) has its _origin in the disordered 4 In(7(N))/d InN, plotted as a function of M. The numeri-
nature of the backbone of percolation clusters and should nL;; \,a1ues are reported in Table | and compared with values
be present on deterministic fractals, such as the Sierpinsklyan from Refs[11-17. The present results are in very
lattice. The present exact enumeration results support thigooq agreement with the known values from renormalization
conclusion. _ group(RG) calculations, in support of our approach based on
The enhancement exponey is related to the total num- o exact enumeration calculation of short chain lengths. The
ber of SAW configurations of lengtN, Cy s, on the Sier-  RG results have been obtained partly by using the fact that
pinski lattice by Sierpinski lattices belong to the same universality class as
the truncatedh-simplex latticed12,18§.
Cn,s~ sgN7s ™, (7 P 1248
valid for N>1, wherepus is the effective coordination num- B. Total number of SAW configurations
ber of the lattice. In what follows, we discuss the numerical To determine the enhancement expongnand the effec-
results and the averaging method employed. tive coordination number of the lattices, we study the
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TABLE |I. Numerical results for the critical exponentg and ys, and for the effective coordination
numberug, obtained from exact enumeration calculations of SAWs on the Sierpinski lattide= b and
d=3. The values reported in parentheses have been obtained by means of renormalization group techniques.

d=2 d=3

Vs 0.78+0.03 (0.7980) 0.66+0.04 (O.6740f)

Ys 1.36+0.03 (1.375%) 1.42+0.04 (1.446%)

Us 2.29+0.01 (2.28809) 3.82+0.02 (3.815%)

3Reference$ll-14.

bReference§l5-17.

‘Referencd11].

YReference§12—14.

®Referencd12].
total number of SAWs oN steps(Cy s). The expected be- IN(Cys) INnAg In N
havior from Eq.(7) has been analyzed in two different ways, N - N ThastlrsmD ()

since the value ofyg needs to be determined as precisely as
possible to verify whether Eq5) holjj'“s. The first one con- it suitable values of the fit parametets, ys, and us.
sists in studying the quantifCy s)» " as a function oN,  The results are shown in Fig. 4. Both methods yield consis-

for different values ofu, as shown in Fig. 3. The accepted tent results and our final values are reported in Table |.
value u= ug yields the “best” power-law dependence of

(Cn,soue~ N versusN, for largeN.

. . . . . C. Probability distribution function
The second method consists in a direct fit of the function y

Cn.s=AsuSN?s™ 1 in the form Our aim in studying the probability distribution for the
' end-to-end chemical distance for fixed number of steps
1R e 7 — N, Pg(~,N), is to estimate the still unknown exponers
T s andg3, in bothd=2 andd= 3. To minimize spurious lattice
£ ' : ] effects, we study the mean distributioRg(~,N)), averaged
- over different starting points, as discussed in the Appendix.

The mean PDFs are shown in Fig. 5. Fbr2 one ob-
serves some irregularities OPg(/,N)) versus/ around/
=17 (i.e., for x=//N"s=1.2), whereas ind=3 some ir-
regularities occur around'=9 (x=1.2) and/ =13. These
102 F T - . spurious oscillations have their origin in the structure of the

] underlying Sierpinski lattice, since at distancés-5,9,13,
17, etc., the SAW is entering a new substructure after passing
the points/—1=4,8,12,16, etc., where two substructures
merge together providing a bottleneck to the SAW. If the
calculations are performed by considering a single starting
point for the walks, located, for instance, at a “vertex” of the
lattice, the resulting oscillations will completely dominate

10° 10'
N

1.4 .|-I-I-I-I-I-I-III—I-I-I-I-I-I'I— ]

{Cusyn™

FIG. 3. Total number of SAWs ofl steps(Cy s) on the Sier-

pinski lattice: determination of the effective coordination number In{Cys) 1.2 L ]
s and enhancement exponent, by pIotting(CN,Sm’N versusN N . ]
in double-logarithmic form, for different values @f. The accepted i ]

value for ug is obtained wherqCy s)u ™" displays a satisfactory ! "u..“““ ]
power law, and the associated slope yiejds- 1. The plots corre- [ seosescssce
spond to(a) d=2, for u= us=2.29 (circles, u=2.24 (diamond$ 08 510 15 20 25 3'0

andu=2.34(squares The dashed line is a fit yieldings=1.35. It

has been obtained from the successive slopggN)—1 N

=d In[{Cy9us "JdIn N plotted versus N in the inset. The con- FIG. 4. Total number of SAWs oN steps(Cy s), plotted as
tinuous line in the inset represents the RG resllis-14], ys—1 IN{Cyg/N versusN. The lines are fits with the form (€yg)/N
=0.3752.(b) d=3, u=pus=3.82 (circles, u=3.72 (diamonds, =(In AQ/N+In pst+[(ys—1)INNJ/N for N=4, ind=2 (circles and

and ©=3.92 (squares The successive slope@nsed yield yg d=3 (squares The resulting values for the fit parameters atg:
=1.41, the value is represented by the dashed line. The continuous2.29, ys=1.36, andAgs=1.7 in d=2, and ug=3.82, y5s=1.43,
line in the inset represents the RG res(ilt$], ys—1=0.4461. andAg=0.7 ind=3, consistent with those obtained in Fig. 3.
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FIG. 5. Mean probability distribution functioPs(/’,N)) for

the end-to-end chemical distangefor fixed number of step$\,
plotted as”(Pg(/,N)) versus//N"s, in the casega) d=2 for N
=30 andvs=0.78, and(b) d=3 for N=20 and vs=0.66. The
continuous lines represent the theoretical vagijer dg obtained
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FIG. 6. Mean probability distribution functiofiPg(~,N)) for

the end-to-end chemical distaneefor fixed number of step#,
using the same data as in Fig. 5, for the casesl=2 and(b) d
=3, analyzed according to the method discussed in [®éf.Self-
consistent determination ofg3:

Plotted is the quantity

using Eq.(5) for the RG values reported in Table I. The daShEdY(x)EC(Sg%dS)/&S(Cg)*l/(PS(/,N))ex;{(cgﬁs//NVS)‘SS] Versus

lines in (&) and (b) represent fits of the data, in the regimgs
<N"s and/>N"s, according to Eqs(2) and(3). The correspond-
ing values forgf are reported in Table li(For g§ see Fig. 6.A
more accurate determination of the expongts illustrated in the
insets, where the quantig{ Ps(~,N))/(//N*s)% is plotted versus
/IN*s, The exponengf is obtained from the slope of the ansatz
/{Ps(/’,N)>/(//N”S)dS~(/’/N”S)gf for /<Ns, yielding the re-
sults:g$=0.44 ind=2 andg$=0.65 ind=3, in very good agree-

ment with the theoretical prediction E().

drastically decreases the spurious oscillations, they are stif

apparent in Fig. 5.

The results of the fits fog?, using the asymptotic scaling  firm those obtained from Fig. 5 and are reported in Table II.
form Eq. (3) for x<1, are reported in Table Il. The second Contrary to the case af}, a theoretical estimation far is
exponentﬁ is determined by applying a little more sensitive still lacking. In d-dimensional regular systems, it is well
approach, as illustrated in Fig. 6. The resulting values conknown thatg, is given by the relatiorg,= o[ d(vg—1/2)

xzcé’as//N”S, with cg=0.47 ind=2 andcg=1.20 ind= 3, which

is expected to scale a‘S(x)fvxg?*dS. Here, 6s=1/(1—vg) has
been assumed, ari@f; is a constant related to the normalization of
(Pg(7,N)). The slopes of the dashed lines represent the fitted val-
ues ofg§+ ds, which are reported in Table Il. Self-consistent de-
termination of §5: The insets show detailed plots to estimate the
accuracy of the values @?Jr dg thus obtained. Plotted is the quan-

S
tity y(x)=—In[(CY cE %/ (Py(/,N)) (cL?/INve) (9709

versusxscg‘ss/l N"s, expected to scale agx)~x?s, for the val-
the PDF mak|ng |t Very dlfﬂcult to extract the Sca“ng expo_ L_IeS Ofgg used &%bove. The S|0pes of the dashed lines I’ep.resent the
nents reliably. Although the applied averaging proceduref't values ofdg, in very good agreement with the values displayed

y the continuous lines, obtained from E¢) using the RG results
for vg (Table ).

TABLE Il. Critical exponentsgf and &g for SAWs on Sierpinski lattices. The first lin@heory reports
the theoretical values obtained from Ef) and Eq.(4), respectively, using the values o and ys reported
in Table I. The second linéFit) reports numerical values obtained directly from the plots of the PDF
displayed in Fig. 5 and Fig. 6. The third lif®G) reports the results from RG calculations using the RG

values ofvg and yg from Table | together with Eq5) and Eq.(4). The bottom line of the table contains the
values ofg3 obtained directly from the PDEFig. 6).

d=2 d=3
Theory 0.46:0.04 0.64:0.07
'H Fit (Fig. 5 0.44+0.05 0.65-0.08
RG [Eq. (5)] 0.470 0.662
Theory 4.770.25 2.940.20
s Fit (Fig. 6) 5.1+0.2 3.0:0.3
RG [Eq. (4)] 4.965 3.068
oH Fit (Fig. 6 2.34+0.10 2.6:0.4
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—(y—1)] [19], where 6=1/(1—vg). Unfortunately, a
straightforward extension of this form to the Sierpinski lat-
tice (as well as to percolation clusjedoes not lead to good
results.

IV. DISCUSSION

We have studied scaling properties of SAWSs on Sierpinski (a) (b)
lattices using exact enumeration techniques of all walks up to
a lengthN, in bothd=2 (N<30) andd=3 (N=<20) spatial
dimensions. We have determined the critical exponent
describing the spatial extent of the walks, the enhancement
exponentys and the effective coordination number of the
lattice ug, both describing the total number of SAW con-
figurations ofN steps.

Our numerical results are consistent with renormalization
group values known in the literature. We find thgt in d
=3 is larger than the value id=2, in agreement with the ©) ()
results by Dhaf11], possibly indicating thaf s increases by
increasing the dimensionality of the Sierpinski lattice. This is
also consistent with the predictiop—1.618 ford—« ob-

FIG. 7. lllustration of the choice of starting points for SAWs on

- . . L . the Sierpinski lattice ird=2 and the lattice construction procedure
tained in Ref[20]. Note that this behavior is opposite to that used in this work. Ina) the corresponding lattice is shown up to the

gound on regt:jlak; systems, forlvghliyil+é4_bd)/6 t[ﬁl] it sI%cond generation step, where the set of starting lattice points are
ecreases and becomes equal to 1 at and above the CriliGgy;q oy by the full circles. The fractal lattice is constructed in such

dlmenS|0nd=d.c=.4'(see, e.g.[l,_3]), as well as to t_hat ob- a way that the shadowed triangle, containing the starting points,
served on the incipient percolation cluster, for whiglalso  omains located as close as possible to the center of the lattice, thus

decreases and becomes equal to 1 at and above the criticgininating lattice boundary effects for the chain lengths consid-

dimensiond=d.=6 (see, e.g[6,7]). Our results forysmay  ered. The plots irfb), (c), and(d) illustrate the initial construction
be an indication of the absence of an upper critical dimensteps.

sion of SAWs on Sierpinski lattices.

Regarding the probability distribution function of SAWs ] ] ) ) N
for fixed N, Ps(/,N), we have studied its scaling forms and undesired glternatlng behavior as a function of_the position
have determined the corresponding exponegfsand g3, due. to Iattlc':e. eﬁ‘gcte{see, e.g.[lO]): The latter mtroduceT
characterizing the associated scaling function, values whicAdditional difficulties for the evaluation of the corresponding
were unknown so far. We have proposed a simple theoretic&caling exponents. To minimize such lattice effects and to
form for gf, ie. gfz(ys_ 1)/vs, which describes very allow precise estimates for the scaling exponents, we have
well the present numerical values. implemented an averaging procedure in whig/pically 10—

This latter relation is interesting, since it is different from 15) different, and nonequivalent, lattice points are considered
the one recently proposed for SAWs on the backbone of th&s starting points of the SAWSs. The starting polias well as
incipient percolation clustei7] [cf. Eq. (6)]. The main dif- the lattice sizeare chosen such that an SAW starting in any
ference resides in the fact that the backbone is a disordereaf these points is not able to reach the lattice boundary. A
fractal, where the probability that the walk returns close to itsmean PDF, for example, is obtained by averaging over the
starting point after a large number of steNsdepends on associated PDF corresponding to each starting point.
additional constraints due to the statistical nature of the self- The chosen set of starting points for the two-dimensional
similar system. In this sense, Sierpinski lattices are morease, constituted of 15 points and obtained at the second
similar to regular systems than to disordered fractal strucgeneration step of the fractal, is illustrated in Fig. 7.dn
tures. It would be interesting to study SAWs on other disor-=3, the set amounts to ten points corresponding to the first
d_ered as_we]l as deterministic self-similar structures to CONyeneration steict. Fig. 1). The construction procedure is
firm our findings. performed in such a way that the set of starting points re-
mains located as close as possible to the center of the lattice
in order to eliminate boundary effects, and the lattice is

We acknowledge fruitful and stimulating discussions withgrown in a circular fashion until it is guaranteed that the
S. Havlin. Financial support from the Deutsche ForschungsSAW cannot reach the lattice bounddy. Figs. 1b)—7(d)].
gemeinschaft is gratefully acknowledged. In our calculations, we have considered chainsNs£ 30
steps ind=2 andN=<20 steps ird=3. To avoid finite lattice
effects we have grown a fractal lattice up the seventh gen-
eration step ind=2, corresponding to 3282 lattice points,

It is known that PDFs and other observables on determinand up to the sixth step ith=3 corresponding to 8194 lattice
istic fractals, such as the Sierpinski lattice, often display arsites.
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