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Self-avoiding walks on Sierpinski lattices in two and three dimensions
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The scaling properties of linear polymers on deterministic fractal structures, modeled by self-avoiding
random walks~SAW! on Sierpinski lattices in two and three dimensions, are studied. To this end, all possible
SAW configurations ofN steps are enumerated exactly and averages over suitable sets of starting lattice points
for the walks are performed to extract the mean quantities of interest reliably. We determine the critical

exponent describing the mean end-to-end chemical distancel̄ (N) after N steps and the corresponding distri-
bution function,PS(l ,N). A des Cloizeaux-type relation between the exponent characterizing the asymptotic
shape of the distribution, forl →0 andN→`, and the one describing the total number of SAW ofN steps is
suggested and supported by numerical results. These results are confronted with those obtained recently on the
backbone of the incipient percolation cluster, where the corresponding exponents are very well described by a
generalized des Cloizeaux relation valid for statistically self-similar structures.
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I. INTRODUCTION

The study of statistical properties of linear polyme
modeled by self-avoiding random walks~SAW! embedded in
regular systems, has been extensively reported in the lit
ture @1–3#. The effect of additional quenched disorder of t
embedding matrix on the scaling behavior of SAW rep
sents a challenging area of research, particularly for st
tures displaying self-similar properties where the correspo
ing critical exponents are expected to be different than
regular systems. Large percolation clusters at the percola
threshold are good candidates since they represent quite
eral models of random fractal structures~see, e.g., Refs
@4–8#!. A question which is not completely understood r
gards the relative role of disorder and self-similarity on t
distribution of the walks. To this end, the study of order
systems such as the Sierpinski lattice, displaying exact s
similar scaling, is interesting to shed some light into th
quest. This is the goal of the present paper.

The Sierpinski lattices we consider are illustrated in F
1, in bothd52 andd53 spatial dimensions. These fract
objects are characterized by a mass fractal dimensiondS
5 ln(d11)/ln 2. We construct a ‘‘large’’ fractal lattice~cf. the
Appendix!, on which a self-avoiding walk is started at
given lattice point and is constrained to make steps betw
nearest-neighbor lattice sites. To study the statistical pro
ties of the walks, we enumerate exactly all the SAW config
rations ofN steps. This method has proved useful in the c
of disordered systems, such as the backbone of the incip
percolation cluster@6,7#. On Sierpinski lattices we study th
chains using the topological metric, merely due to numer
convenience, since the chemical distancel between two lat-
tice points scales as the Euclidean distancer between them,
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l >r . A review of the present status of SAWs on Sierpins
lattices can be found in Ref.@8#.

The paper is organized as follows. In Sec. II we discu
the expected scaling behaviors for the mean end-to-
chemical distance of the SAW afterN steps, the scaling
forms of the probability distribution functionPS(l ,N), and
the total number of walks of lengthN, CN,S . In Sec. III, we
discuss the numerical procedure employed and report
exact enumeration results for the end-to-end distance~Sec.
III A !, the total number of SAW configurations~Sec. III B!,
and the probability distribution function~Sec. III C!. Finally,
Sec. IV summarizes the main results and our concluding
marks.

II. THEORETICAL RESULTS

To characterize the spatial extent of SAWs on a Sierpin
lattice let us consider the topological end-to-end distancel
after N steps of the walk. By averaging over all possib
walks starting at a given lattice point~using exact enumera
tion techniques! the mean end-to-end chemical distan
l̄ (N) is obtained. The later is expected to scale as

l̄ ~N!;NnS, ~1!

r-
,

FIG. 1. Sites~circles/cubes! and bonds~thick lines! of the Sier-
pinski lattice in~a! d52 and~b! d53 dimensions, obtained afte
the second~a! and first generation step~b!.
©2002 The American Physical Society07-1
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which defines the critical exponentnS . To obtain more de-
tailed structural information of the SAWs it is useful to d
termine the probabilityPS(l ,N)dl that a walk of lengthN
has an end-to-end distance in the rangel and l 1dl . The
corresponding probability distribution function~PDF!
PS(l ,N) is expected to obey the scaling form

PS~ l ,N!5
1

l
FSS l

l̄ ~N!
D , ~2!

where the scaling functionFS(x) is expected to behave as

FS~x!5H xg1
S
1dS for x!1

xg2
S
1dS exp@2cSxdS# for x@1,

~3!

andPS(l ,N) is normalized according to*PS(l ,N)dl 51.
Similarly as for SAWs on regular lattices and fract

structures, such as the incipient percolation cluster, the e
nentdS is believed to be given by

dS5~12nS!21, ~4!

while the remaining exponentsg1
S andg2

S are not known so
far. On regular lattices, the corresponding exponentg1 is
given by g15(g21)/nF @9#, wherenF is the Flory expo-
nent, and the second critical exponentg, describing the total
number of SAWs of lengthN, is denoted as the enhanceme
exponent. In this work, we show that the simple generali
tion

g1
S5

gS21

nS
~5!

turns out to describe very well the values ofg1
S obtained

numerically. This form forg1
S should be confronted with the

one recently derived in the case of SAWs on the backbon
the incipient percolation cluster, which in the Euclidean m
ric reads

g1
r 5

g121

n r
1

bperc

nperc
, ~6!

denoted as the generalized des Cloizeaux relation@7#. Here,
bperc and nperc are the usual critical percolation exponen
The second term in Eq.~6! has its origin in the disordere
nature of the backbone of percolation clusters and should
be present on deterministic fractals, such as the Sierpi
lattice. The present exact enumeration results support
conclusion.

The enhancement exponentgS is related to the total num
ber of SAW configurations of lengthN, CN,S , on the Sier-
pinski lattice by

CN,S;mS
NNgS21, ~7!

valid for N@1, wheremS is the effective coordination num
ber of the lattice. In what follows, we discuss the numeri
results and the averaging method employed.
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III. NUMERICAL RESULTS

To determine the scaling exponents characterizing
probability distribution functionPS(l ,N) accurately, an av-
erage over different starting points for the SAW is required
minimize the strong lattice effects typical of the Sierpins
structure~see, e.g.,@10#!. Details of the method employed ar
discussed in the Appendix. In what follows, the average o
different starting points will be indicated by the symbol^¯&.

A. End-to-end chemical distance

The behaviors of the mean end-to-end chemical dista

^ l̄ (N)& as a function of step lengthN, obtained by exact
enumeration of all walks up toN530 in d52 andN520 in
d53, are displayed in Fig. 2. The insets show the effect
exponents nS(N), obtained from the successive slop
d ln^l̄ (N)&/d ln N, plotted as a function of 1/N. The numeri-
cal values are reported in Table I and compared with val
taken from Refs.@11–17#. The present results are in ver
good agreement with the known values from renormalizat
group~RG! calculations, in support of our approach based
the exact enumeration calculation of short chain lengths.
RG results have been obtained partly by using the fact
Sierpinski lattices belong to the same universality class
the truncatedn-simplex lattices@12,18#.

B. Total number of SAW configurations

To determine the enhancement exponentgS and the effec-
tive coordination number of the latticemS , we study the

FIG. 2. Mean end-to-end chemical distance^ l̄ (N)& for SAWs
on the Sierpinski lattice as a function of the step lengthN, using
exact enumeration of all walks, in~a! d52 for N<30, averaged
over 15 starting points, and~b! d53 for N<20, averaged over
10 starting points. The continuous lines correspond to the value
nS as obtained from RG calculations@14# ~cf. Table I!,
nS>0.7986 (d52) and nS>0.67402 (d53). The dashed lines
display the present results, yieldingnS>0.78 (d52) and
nS>0.66 (d53). The insets display the successive slop

nS(N)[d ln^l̄ (N)&/d ln N plotted versus 1/N.
7-2
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TABLE I. Numerical results for the critical exponentsnS and gS , and for the effective coordination
numbermS , obtained from exact enumeration calculations of SAWs on the Sierpinski lattice ind52 and
d53. The values reported in parentheses have been obtained by means of renormalization group tec

d52 d53

nS 0.7860.03 ~0.7980a! 0.6660.04 ~0.67402b!
gS 1.3660.03 ~1.3752a! 1.4260.04 ~1.4461c!
mS 2.2960.01 ~2.28803d! 3.8260.02 ~3.815e!

aReferences@11–14#.
bReferences@15–17#.
cReference@11#.
dReferences@12–14#.
eReference@12#.
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total number of SAWs ofN steps^CN,S&. The expected be-
havior from Eq.~7! has been analyzed in two different way
since the value ofgS needs to be determined as precisely
possible to verify whether Eq.~5! holds. The first one con-
sists in studying the quantitŷCN,S&m

2N as a function ofN,
for different values ofm, as shown in Fig. 3. The accepte
value m5mS yields the ‘‘best’’ power-law dependence o
^CN,S&m

2N versusN, for largeN.
The second method consists in a direct fit of the funct

CN,S5ASmS
NNgS21 in the form

FIG. 3. Total number of SAWs ofN steps^CN,S& on the Sier-
pinski lattice: determination of the effective coordination numb
mS and enhancement exponentgS , by plotting^CN,S&m

2N versusN
in double-logarithmic form, for different values ofm. The accepted
value for mS is obtained when̂ CN,S&m

2N displays a satisfactory
power law, and the associated slope yieldsgS21. The plots corre-
spond to~a! d52, for m5mS52.29 ~circles!, m52.24 ~diamonds!
andm52.34~squares!. The dashed line is a fit yieldinggS51.35. It
has been obtained from the successive slopesgS(N)21
[d ln@^CN,S&mS

2N#/d ln N plotted versus 1/N in the inset. The con-
tinuous line in the inset represents the RG results@11–14#, gS21
>0.3752. ~b! d53, m5mS53.82 ~circles!, m53.72 ~diamonds!,
and m53.92 ~squares!. The successive slopes~inset! yield gS

51.41, the value is represented by the dashed line. The contin
line in the inset represents the RG results@11#, gS21>0.4461.
02110
s
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ln^CN,S&
N

5
ln AS

N
1 ln mS1~gS21!

ln N

N
~8!

with suitable values of the fit parametersAS , gS, andmS .
The results are shown in Fig. 4. Both methods yield con
tent results and our final values are reported in Table I.

C. Probability distribution function

Our aim in studying the probability distribution for th
end-to-end chemical distance for fixed number of ste
N, PS(l ,N), is to estimate the still unknown exponentsg1

S

andg2
S , in bothd52 andd53. To minimize spurious lattice

effects, we study the mean distribution^PS(l ,N)&, averaged
over different starting points, as discussed in the Append

The mean PDFs are shown in Fig. 5. Ford52 one ob-
serves some irregularities of^PS(l ,N)& versusl aroundl
517 ~i.e., for x5l /NnS>1.2!, whereas ind53 some ir-
regularities occur aroundl 59 (x>1.2) andl 513. These
spurious oscillations have their origin in the structure of t
underlying Sierpinski lattice, since at distancesl 55,9,13,
17, etc., the SAW is entering a new substructure after pas
the points l 2154,8,12,16, etc., where two substructur
merge together providing a bottleneck to the SAW. If t
calculations are performed by considering a single star
point for the walks, located, for instance, at a ‘‘vertex’’ of th
lattice, the resulting oscillations will completely domina

r

us

FIG. 4. Total number of SAWs ofN steps^CN,S&, plotted as
ln^CN,S&/N versusN. The lines are fits with the form ln^CN,S&/N
5(ln AS)/N1ln mS1@(gS21)ln N#/N for N>4, in d52 ~circles! and
d53 ~squares!. The resulting values for the fit parameters are:mS

52.29, gS51.36, andAS51.7 in d52, andmS53.82, gS51.43,
andAS50.7 in d53, consistent with those obtained in Fig. 3.
7-3
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the PDF making it very difficult to extract the scaling exp
nents reliably. Although the applied averaging proced
drastically decreases the spurious oscillations, they are
apparent in Fig. 5.

The results of the fits forg1
S , using the asymptotic scalin

form Eq. ~3! for x!1, are reported in Table II. The secon
exponentg2

S is determined by applying a little more sensitiv
approach, as illustrated in Fig. 6. The resulting values c

FIG. 5. Mean probability distribution function̂PS(l ,N)& for
the end-to-end chemical distancel for fixed number of stepsN,
plotted asl ^PS(l ,N)& versusl /NnS, in the cases~a! d52 for N
530 andnS50.78, and~b! d53 for N520 andnS50.66. The
continuous lines represent the theoretical valueg1

S1dS obtained
using Eq.~5! for the RG values reported in Table I. The dash
lines in ~a! and ~b! represent fits of the data, in the regimesl

!NnS and l @NnS, according to Eqs.~2! and~3!. The correspond-
ing values forg1

S are reported in Table II.~For g2
S see Fig. 6.! A

more accurate determination of the exponentg1
S is illustrated in the

insets, where the quantityl ^PS(l ,N)&/(l /NnS)dS is plotted versus
l /NnS. The exponentg1

S is obtained from the slope of the ansa

l ^PS(l ,N)&/(l /NnS)dS;(l /NnS)g1
S

for l !NnS, yielding the re-
sults:g1

S50.44 ind52 andg1
S50.65 ind53, in very good agree-

ment with the theoretical prediction Eq.~5!.
02110
e
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firm those obtained from Fig. 5 and are reported in Table
Contrary to the case ofg1

S , a theoretical estimation forg2
S is

still lacking. In d-dimensional regular systems, it is we
known thatg2 is given by the relationg25d@d(nF21/2)

FIG. 6. Mean probability distribution function̂PS(l ,N)& for
the end-to-end chemical distancel for fixed number of stepsN,
using the same data as in Fig. 5, for the cases~a! d52 and~b! d
53, analyzed according to the method discussed in Ref.@6#. Self-
consistent determination ofg2

S : Plotted is the quantity

Y(x)[c
S

(g2
S
1dS)/dS(CS8)

21l ^PS(l ,N)&exp@(cS
1/dSl /NnS)dS# versus

x[cS
1/dSl /NnS, with cS50.47 ind52 andcS51.20 ind53, which

is expected to scale asY(x);xg2
S
1dS. Here, dS51/(12nS) has

been assumed, andCS8 is a constant related to the normalization
^PS(l ,N)&. The slopes of the dashed lines represent the fitted
ues ofg2

S1dS , which are reported in Table II. Self-consistent d
termination ofdS : The insets show detailed plots to estimate t
accuracy of the values ofg2

S1dS thus obtained. Plotted is the quan

tity y(x)[2 ln@(CS8)
21c

S

(g2
S
1dS)/dSl ^PS(l ,N)&(cS

1/dSl /NnS)2(g2
S
1dS)#

versusx[cS
1/dSl /NnS, expected to scale asy(x);xdS, for the val-

ues ofg2
S used above. The slopes of the dashed lines represen

fit values ofdS , in very good agreement with the values display
by the continuous lines, obtained from Eq.~4! using the RG results
for nS ~Table I!.
DF
G

e

TABLE II. Critical exponentsg1
S anddS for SAWs on Sierpinski lattices. The first line~Theory! reports

the theoretical values obtained from Eq.~5! and Eq.~4!, respectively, using the values ofnS andgS reported
in Table I. The second line~Fit! reports numerical values obtained directly from the plots of the P
displayed in Fig. 5 and Fig. 6. The third line~RG! reports the results from RG calculations using the R
values ofnS andgS from Table I together with Eq.~5! and Eq.~4!. The bottom line of the table contains th
values ofg2

S obtained directly from the PDF~Fig. 6!.

d52 d53

Theory 0.4660.04 0.6460.07
g1

S Fit ~Fig. 5! 0.4460.05 0.6560.08
RG @Eq. ~5!# 0.470 0.662

Theory 4.7760.25 2.9460.20
dS Fit ~Fig. 6! 5.160.2 3.060.3

RG @Eq. ~4!# 4.965 3.068
g2

S Fit ~Fig. 6! 2.3460.10 2.660.4
7-4
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2(g21)] @19#, where d51/(12nF). Unfortunately, a
straightforward extension of this form to the Sierpinski la
tice ~as well as to percolation cluster! does not lead to good
results.

IV. DISCUSSION

We have studied scaling properties of SAWs on Sierpin
lattices using exact enumeration techniques of all walks u
a lengthN, in bothd52 (N<30) andd53 (N<20) spatial
dimensions. We have determined the critical exponentnS ,
describing the spatial extent of the walks, the enhancem
exponentgS and the effective coordination number of th
lattice mS , both describing the total number of SAW co
figurations ofN steps.

Our numerical results are consistent with renormalizat
group values known in the literature. We find thatgS in d
53 is larger than the value ind52, in agreement with the
results by Dhar@11#, possibly indicating thatgS increases by
increasing the dimensionality of the Sierpinski lattice. This
also consistent with the predictiong→1.618 ford→` ob-
tained in Ref.@20#. Note that this behavior is opposite to th
found on regular systems, for whichg'11(42d)/6 @21#
decreases and becomes equal to 1 at and above the c
dimensiond5dc54 ~see, e.g.,@1,3#!, as well as to that ob-
served on the incipient percolation cluster, for whichg also
decreases and becomes equal to 1 at and above the c
dimensiond5dc56 ~see, e.g.,@6,7#!. Our results forgS may
be an indication of the absence of an upper critical dim
sion of SAWs on Sierpinski lattices.

Regarding the probability distribution function of SAW
for fixed N, PS(l ,N), we have studied its scaling forms an
have determined the corresponding exponents,g1

S and g2
S ,

characterizing the associated scaling function, values wh
were unknown so far. We have proposed a simple theore
form for g1

S , i.e., g1
S5(gS21)/nS , which describes very

well the present numerical values.
This latter relation is interesting, since it is different fro

the one recently proposed for SAWs on the backbone of
incipient percolation cluster@7# @cf. Eq. ~6!#. The main dif-
ference resides in the fact that the backbone is a disord
fractal, where the probability that the walk returns close to
starting point after a large number of stepsN depends on
additional constraints due to the statistical nature of the s
similar system. In this sense, Sierpinski lattices are m
similar to regular systems than to disordered fractal str
tures. It would be interesting to study SAWs on other dis
dered as well as deterministic self-similar structures to c
firm our findings.
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APPENDIX: SIERPINSKI LATTICE AND AVERAGING
PROCEDURE FOR THE SAWs

It is known that PDFs and other observables on determ
istic fractals, such as the Sierpinski lattice, often display
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undesired alternating behavior as a function of the posit
due to lattice effects~see, e.g.,@10#!. The latter introduce
additional difficulties for the evaluation of the correspondi
scaling exponents. To minimize such lattice effects and
allow precise estimates for the scaling exponents, we h
implemented an averaging procedure in which~typically 10–
15! different, and nonequivalent, lattice points are conside
as starting points of the SAWs. The starting points~as well as
the lattice size! are chosen such that an SAW starting in a
of these points is not able to reach the lattice boundary
mean PDF, for example, is obtained by averaging over
associated PDF corresponding to each starting point.

The chosen set of starting points for the two-dimensio
case, constituted of 15 points and obtained at the sec
generation step of the fractal, is illustrated in Fig. 7. Ind
53, the set amounts to ten points corresponding to the
generation step~cf. Fig. 1!. The construction procedure i
performed in such a way that the set of starting points
mains located as close as possible to the center of the la
in order to eliminate boundary effects, and the lattice
grown in a circular fashion until it is guaranteed that t
SAW cannot reach the lattice boundary@cf. Figs. 7~b!–7~d!#.
In our calculations, we have considered chains ofN<30
steps ind52 andN<20 steps ind53. To avoid finite lattice
effects we have grown a fractal lattice up the seventh g
eration step ind52, corresponding to 3282 lattice point
and up to the sixth step ind53 corresponding to 8194 lattic
sites.

FIG. 7. Illustration of the choice of starting points for SAWs o
the Sierpinski lattice ind52 and the lattice construction procedu
used in this work. In~a! the corresponding lattice is shown up to th
second generation step, where the set of starting lattice points
indicated by the full circles. The fractal lattice is constructed in su
a way that the shadowed triangle, containing the starting poi
remains located as close as possible to the center of the lattice,
eliminating lattice boundary effects for the chain lengths cons
ered. The plots in~b!, ~c!, and~d! illustrate the initial construction
steps.
7-5
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